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PREFACE.

Tais little volume has been prepared by
the authors for the purpose of elucidating
the mathematical formuls appearing in
the pages of Professor Silvanus P. Thomp-
son’s “ Dynamo-Electric Machinery,” and
“ Polyphase Electric Currents.” While the
- authors do not profess to make their read-
ers mathematicians, they believe that their
readers will be fully capable of understand-
ing the meaning of all the mathematical
formulee appearing in the above-mentioned
works, after a careful perusal of this little

book.

PEILADELPHIA, December, 1897,
it
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ALGEBRA MADE EASY.

CHAPTER I
INTRODUCTION.

THE essential difference between pure
and applied mathematics lies in the fact
that symbols are employed in pure mathe-
matics for the purpose of conveniently
studying the relations between the quan-
tities they represent, entirely independently
of arithmetical or practical applications;
whereas, in applied mathematics the sym-
bols are employed especially for the pur-
pose of enabling practical and arithmetical
solutions and applications to be obtained
from the expressions of the laws control-
ling such quantities.

Just as there is no limit to infinite truth,
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so there is no Jimit to the range, extent,
and complexity of pure mathematics; but
applied mathematics is limited in range,
in order to be capable of ready applica-
tion and utilization. When a formula or
analysis in the department of applied
mathematics becomes so complex, difficult,
or intricate, as to render its solution and
arithmetical computation more laborious
than the object to be attained deserves, it
thereby places itself beyond the pale
of applied mathematics. Consequently,
applied mathematics is relatively simple
mathematics.

The mathematics which the engineer
employs must be relatively simple, because
his duties compel him to adopt methods
of computation that shall be readily sus-
ceptible of being checked and corrobo-
rated, and shall not be so intricate as to
demand undue share of his time and
thought. Anyone who can master arith-
metic can master all the processes of
applied mathematics, such as the engineer
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has to use, since such mathematics has to be
thought out and worked out in arithmetic.

There never has been, and, proverbially,
there never can be, a royal road to knowl-
edge, the pathway to which is only found
on the highway of labor. It is neither
the intention nor the claim of the authors,
in the following pages, to make their
readers competent mathematicians. But
it is their intention and claim to make
them able to grasp and understand the
meaning of the formule and equations
which are scattered throughout technolog-
ical literature. This symbolic language,
which so largely pervades scientific tech-
nology, is the natural and beautiful lan-
guage of exact quantitative expression.
It is essentially a simple language, shorn,
by long and wearisome evolution, of almost
every vestige of unnecessary or superfluous
appendage, and which, when properly
enunciated, carries a meaning to the
student as clear and perspicuous as its
expression is brief and direct.
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To handle and manipulate algebraic
expressions, to solve equations and reduce
them to their simplest forms, is an art
attained only by study and practice, and
with which the following pages do not
deal. It hasno essential part in the under-
standing of mathematical expressions.



CHAPTER IL

THE SYMBOLS COMMONLY EMPLOYED IN AL-
GEBRA ! ADDITION, SUBTRACTION, MULTI-
PLICATION, AND DIVISION.

+ (Plus). The sign of addition. As
7 + 5, meaning the sum of five and seven;
7. e, seven added to five, or five added to
seven.

= (Equality). The sign of equality.
As 7 + 5 = 12; meaning that the sum of
seven and five ¢s equal to twelve.

— (Minus). The sign of subtraction.
As 7 — 5 = 2; meaning that five sub-
tracted from seven is equal to 2.

X (Multiplication). The sign of multi-
plication. As7 X 5 = 35; meaning that
7 multiplied by 5, or 5 multiplied by 7, is
equal to 35.

+ (Division). The sign of division.

]
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As 7 + 5 = 1.4; meaning that seven
divided by 5 is equal to 1.

*. (Therefore). A sign used in mathe-
matical reasoning as a mere symbol for
the word “ therefore.”

2 ¢ (Ratio). Signs of proportion. As
7 ¢ 5 % 14 : 10; meaning seven s o
five as is 14 to 10.

( ) (Brackets). Various forms of par-

entheses or brackets, employed for
{ } grouping into one mass a compound
[] quantlty Thus 6 x (7 +5)=5 X

a, b, ¢, d, etc,

A, B, C, D, ete.
of the alphabet representing quantities;
usually, but not necessarily, known
constant quantities. Thus g, is a symbol
commonly used to represent the gravita-
tional force which the earth exerts upon a
gramme mass. In scientific units ¢ =
980.07 dynes at the sealevel in Washing-
ton, D. C.; consequently, g, is more than
a mere number—it stands for a certain

(Symbols). Letters
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force having a magnitude of 980.07 units,
the unit being the dyne.

Again, 7 (Greek letter Pi) is a symbol
commonly used to represent the ratio be-
tween the circumference of a circle and
the diameter, so that,

Circumference of a circle = 7= x Diam-
eter of the circle.

Here = = 8.1416, approximately; or,
roughly, 8%. In this case, =, is the symbol
of a mere numerical magnitude, or ratio
between two geometrical quantities.

A symbol, therefore, may stand for a
number considered solely as such; or for
a number representing any particular
quantity, physical, astronomical, chemical,
etc., stated in reference to a particular
unit. The symbols @, ¥, 2, X, Y, Z, are
commonly, but not necessarily, used in the
mathematical statement of relations, for
quantities whose values are unknown, and
which may or may not be determined from
the relationship given.

A formula is a rule mathematically ex-
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pressed, for determining the value of any
quantity. Thus the equation:

The circumference of a circle = 7 X Diameter,

is a simple formula from which the cir-
cumference of a circle becomes known as
soon as its diameter is given.

ADDITION.

In the equation
c=a+b
we have a symbolic form for the following
statement :

¢, is equal to the sum of @ and &.

If @, b and ¢, are mere numbers, and
a@ = b, while 4 = 7; then ¢ = 12, because
12 =5+ 1. ‘

If a and b, are symbols which represent
electromotive forces acting in a circuit, or
weights lying in a scale pan, then ¢, is
either a total electromotive force, or a
total weight, accordingly. Consequently,
a simple equation involving the process of
addition may express a mere relation be-
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tween ordinary numbers, or between num-
bers which represent physical quantities
expressed in terms of units. Thus, the
equation,

e=a+b+c+d,

where ¢ = 1,5 = 2}, ¢ = 34, d = 4, gives
the relation @ = 11; or, the unknown
quantity @, in this equation, is known
to be equal to 11, because the sum of the
terms a, b, ¢ and d, on the right-hand
side of the equation, is known.

Again, on page 214, of Thompson’s
“Dynamo-Electric Machinery,” appears the
following equation:

G=0+0,

Where, C, termed “(C sub @, is the
symbol expressing the current strength in
the armature of a shunt-wound dynamo;
C, is the current strength supplied to the
main external circuit; and C, termed “ ('
sub &, is the current supplied to the shunt
field. Here, the subscripts a and s, are
used to distinguish between the current
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strengths in the different portions of the
circuit, and the equation makes in sym-
bolic form the following statement :

The current in the armature of the ma-
chine is equal to the sum of the currents
in the main circuit and the shunt field ;
or, if ¢'= 100 amperes, and C,, the shunt-
_ field current, is one ampere, then the arma-
ture current ¢, = 100 + 1 = 101 amperes.
~ Again, on page 188, of Thompson’s
“Polyphase Electric Currents,” occurs the
equation :

Vet Ve + V=0,

This equation has reference to Fig. 130,
on the preceding page. The equation is a
symbolic method of concisely stating the
following :

The sum of the three electromotive
forces which occur in the three branches
pq, gr, and 7p, represented symbolically
by the symbols V,, V., and V,,
is always equal to zero. Consequently,
if any pair of these electromotive

-
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forces is, say 50 volts, then the remain-
ing E. M. F. must be equal to — 50 volts;
or, if any particular E. M. F. is, say
25 volts, then the sum of the remaining
pair of E. M. F.’s must be equal to — 25
volts. In other words, when the three E.
M. Fs expressed in volts, or other units,
_are added together, the sum total is zero.

Similar considerations apply to any num-
ber of added simple terms, such as are
found in the equation:

e=a+b+c+d+e
SUBTRACTION.

As already pointed out, the minus sign
prefixed to a quantity indicates that the
quantity has to be taken negatively, and
has to be subtracted from the quantity
with which it is associated.

Thus in the equation :

x=a—0b,

the right-hand side contains two terms,
the first @, which is 4 or positive, and the
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second — &, which is negative; b, must,
therefore, be subtracted from @, or ¢ must
have its value diminished to the extent of
the value of 4. It may happen that , is
greater than a; as, for example, if ¢ = 3
and b = 5; but the result is interpreted
by giving to the difference a negative
sign; or, in this case,# = — 2. Conse-
quently, in an equation containing simple
terms, some of which are positive and
some negative, it suffices to add all the
positive terms for a positive sum, and
all the negative terms for a negative sum,
and then subtract the latter from the
former. Thus:

c=5+"%7—-8+10 -2,
or,z=5+7+10—-38 — 2,
or,z = 22 — 5,
or, z = 17,

On page 510, of Thompson’s “ Dynamo-
Electric Machinery ” appears the equation,
G =0- G
Here C, represents the total current




ALGEBRA MADE EASY. 13

supplied to a shunt motor; C, the cur-
rent supplied to the armature; and O,
the current supplied to the shunt field.
The equation is equivalent to the fol-
lowing statement: '

The current supplied to the armature
is equal to the current supplied to the
machine, less the current supplied to the
shunt field ; so that if the total current C,
is 100 amperes, and the shunt-field cur-
rent C,, 1 ampere; then the armature cur-
rent C,, would be 100 — 1 = 99 amperes.

BRACKETS OR PARENTHESES.

It is often desirable, in expressing an
equation, to separaté some of the terms
into groups by placing them within a
bracket. Thus, the equation

e=a—-b+c+d-—eg

states that @, is the sum of all the quan-
tities on the right-hand side, after due
allowance has been made for their sign;
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i. e, after the proper additions and sub-
tractions have been effected. It is often
convenient to separate the positive quan-
tities from the negative quantities. The
first step is to bring them together in
two groups ; thus,

e=a+c+d-0b-—e

These groups may be included in
brackets to give each the appearance of
a single term. Thus,

z=(@+c+d)+ (- b—o.

Here the compound term + (— & — ¢)
may be written — (b + ¢) ; because adding
the sum of two negative quantities is the
same as subtracting their positive sum, so
that the sum of 4 and ¢, is to be subtracted
from the first compound term (@ + ¢ + o).
Consequently, a negative sign before a
bracket or parenthesis reverses the sign of
all the terms within it. Thus, in the
above equation leta = 1,6 = 2, ¢ = 8,d
= 4, and ¢ = 5.
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Thenx=1-2+4+3+4 -5,
=(14+8+4)+(—2-05),
=(1+38+4)-(2+5)
=8 -1, '
= 1.

The equation might also be written
x=14+3+4-2-05.

‘Where the line serves as a pair of par-
entheses to group 1, 3, and 4, into a com-
pound term,

o,z=[1+3+4]—-[2+5]
or, @ = {1,+3+4}— {2+5}
That is to say, any form of bracket or

parenthesis might be used to separate the
two groups of terms from each other.

MULTIPLICATION.

An equation,
z=a X b,
means that the quantity @, is the prod-
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uct of @ and b6; so that if ¢ = 5
and b = 10,2 = 50. 'Where simple terms
are employed, as in this case, the multi-
plication sign may be omitted, and the
equation is written,
o =ab,

meaning that , is equal to the product of
aand b. Ingeneral, when two symbols fol-
low each other without any sign between
them, their product is thus indicated ; for

example, _ 5o
€r = a o

Here a, is the product of @, multiplied by

b, multiplied by ¢,and multiplied by 4. If

a=156=2c¢c=38 andd=4; ¢ =24

In some cases a point or period takes

the place of the multiplication sign. Thus,
o = a.b.cd. .

On page 168, of Thompson’s « Dy'namo-
Electric Machinery,” occurs the equation :

(average) £ = n Z N,

where Z, is the average E. M. F. generated
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by a dynamo-electric machine; =, is the
number of revolutions of its armature per
second ; Z, is a certain number of conduct-
ors on the armature surface; and %, the
total number of magnetic lines from one
field pole that traverse the armature.
Consequently, the equation is equivalent to
the following statement:

The average E. M. F. is the product of
the number of turns made by the armature
per second, a certain number of conductors
lying upon the surface of the armature,and
the total number of magnetic lines travers-
ing the armature.

Compound terms formed of the products
of simple terms or factors may be subjected
to addition or subtraction like simple terms.

Thus, on page 189, of Thompson’s
“Polyphase Electric Currents,” occurs the
equation :

W= Vb + Vg,

where W, is the power in watts supplied
by a triphase star-wound armature, as rep-
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resented in Fig. 54, on page 46; V,,, is
the effective pressure between the termi-
nals m and n; and V,,, the pressure
between the terminals m and o; the cur-
rent b, being in the branch », and the cur-
rent ¢, in the branch o. The equation is
equivalent to the following statement :

The total electric power supplied by a
machine is equal to the sum of two com-
pound terms, the first of which is the
product of the current &, and pressure
Vany and the second, the product of the
current ¢, and the pressure V.

In some cases a factor appears outside
a bracket. For example, on page 189,
of Thompson’s “Dynamo-Electric Ma-
chinery,” appears the equation :

E=R+r,+ry) C

This is given in relation to series dyna-
mos. £, is the E. M. F. generated by the
machine ; £, the external resistance of the
circuit ; 7,, the resistance of the armature;
and 7, the resistance of the magnets as
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shown in Fig. 125. () is the current
strength through the circuit in amperes.
This equation expresses the fact that the
product of the current strength in the
circuit in amperes multiplied by a com-
pound term, which is the sum of all the
resistances in the circuit, is equal to the
total E. M. F. in the circuit. This is
only another way of stating Ohm’s law for
the circuit.

Since an equation = ab, is the same as
@ = ba; or, since the order of factors in an
“equation is indifferent, the equation on
page 189, of Thompson’s “ Dynamo-Elec-
tric Machinery,” may be written :

E=CR+r,+ry)
or

E=CR+ O, + Cry,

This shows that a factor placed outside
a bracket is to be multiplied by each term
within the bracket. Suppose, for example,
that the current strength C) in the circuit,
is 100 amperes ; that the external resistance
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R, is 1 ohm ; that the armature resistance

7y, 18 %—(—)th ohm; and the field magnet re-
s 2

100
tion may be written:

E =100 (1 + 0.01 + 0.02),
E =100 (1.08) = 108 volts;

or, multiplying each term within the
bracket by the factor outside,

E =100+ 14+ 2 = 103 volts.

sistance 7, i th ohm—then the equa-

DIVISION.
&

The operation of division is represented
in algebra either by the division bar -+,
or, more commonly, by the fraction bar
employed in ordinary arithmetic. Thus

T =a = b,
may be written

a
w:T-

If a = 8 and b = 4, this becomes z = 3
+ 4, or ¢ = 3 = 0.75. Sometimes the

e ——— -t _ e K i ——— e
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bar takes an inclined form, when it is
called a solidus, thus, # = a/b.

Take, for example, the expression for
Ohm’s law, which is written in the Inter-
national system of notation
- _F

=5
If E, the E. M. F., is 100 volts, and R, the
resistance, is 5 ohms, the current strength

I= % = 20 amperes, and the equation

is equivalent in this case to the following
statement :

The current strength in amperes, in a
circuit having an E. M. F. of 100 volts,
and a resistance of 5 ohms, is equal to 100
divided by 5, or to 20 amperes.

Thus, on page 341, of Thompson’s
“Dynamo-Electric Machinery,” occurs the
equation which is referred to as the funda-

mental equation of the continuous-current
dynamo.:

E = nZN + 108

where 7, is the number of revolutions of
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the armature per second, Z, is the num-
ber of armature conductors employed, 4V,
is the number of magnetic lines through
the armature, and 10°% is 10 raised to the
8th power, or 1 followed by 8 zeros. The
equation may be written:

nZN nZN
10°  ° 100,000,000

This is solved by multiplying together
the proper numerical values of #, Z, and N,
and dividing the product by 100,000,000.
The quotient is the E. M. F. of the ma-
chine in volts.

On page 493, of Thompson’s “ Dynamo-
Electric Machinery,” there occur the equa-
tions: '

E = volts.

where w, is the power utilized in a motor,
E, is the C. E. M. F. of the motor,
C, is the current through the armature ; R,
is the resistance of the motor, and 8, is
the pressure at the motor terminals. This

c— ——— B e S
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is an expression which practically contains
three equations; namely,

w = K¢ (¢))
g0=E¢ZH @
w=5C2) )

These equations may be interpreted as
follows :

(1) The useful power in watts is equal
to the product of the C. E. M. F. of the
motor in volts, and the current strength
passing through its armature in amperes.

(2) The product of the C. E. M. F. in
volts and current in amperes in the arma-
ture, is equal to the product of the C. E.
M. F., multiplied by the difference between
the pressure in volts at terminals and the
C. E. M. F. in volts, divided by the resist-
ance of the machine in ohms.

(8) The useful power of the motor in
watts is equal to the last-named quantity.

Thus, if 8 the pressure at terminals, =
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120 volts, £ = 0.05 ohm, ¢ = 100 am-
peres, & = 115 volts ; then, by (3),

120 — 115)
= 115 (120 — 1165)
v 0.06

— 11 (6)

=115 0.05

=115 x 100

= 11,600 watts.



CHAPTER IIIL
POWERS AND ROOTS.

Ir we multiply a number by itself, the
number is said to be squared, and is repre-
sented by an exponent, index, or super-
script 2, placed close to and above the
number. Thus,

o X a=a;or10 x 10 = 10®* = 100.

Similarly, if a number be multiplied by
itself and again by itself, it is said to be
cubed. Thus

axaxa=a
Similarly,
@ XaXaxa=d,and soon,

This general rule is expressed symbolically
by '
axa...tonterms = a°;
]
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where 7, is any whole number or integer.
Thus,

10° = 100,000,000,

or 1 followed by 8 zeros.

Thus on page 493, of Thompson’s “Dy-
namo-Electric Machinery,” occurs the equa~
tion :

W=w+ C°R.

‘Where W, is the power in watts supplied
to the motor; w, is the power in watts
utilized in the motor; C, the current
strength in amperes passing through the
motor; and R, the resistance of the motor
in ohms. This means that the total power
supplied is equal to the sum of two terms,
one being the utilized power, and the other
the product of the square of the current
and the resistance of the motor. Thus, if
w = 10 kilowatts, or 10,000 watts; = 50
amperes, /£ = 0.1 ohm, then,

W = 10,000 + 50 x 50 x 0.1 =10,250
watts.
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On page 144, of Thompson’s “ Polyphase
Electric Currents,” there is an equation :

s8R
= iy )

Here 7, which is the torque of the motor,
is expressed as the product of ¢, and a frac-
tion. The numerator of the fraction is s.2,
or the product of ¢ and & ; the denomina-
tor of the fraction is the sum of two terms:
namely, the square of £, and the square of
k, multiplied by the square of s. This
equation might be written : ' ’

_ ¢sR
T_R"+k’s’ ’

just as 5 (8/4) may be written 15/4, 4
On page 152, of Thompson’s “Polyphase
Electric Currents,” appears the equation :
The rotor heat H = K (Q-w)>
Here 0 (Capital Omega) is an angular
velocity of a rotary magnetic field ex-
pressed in unit angles per second, and w,
(small Omega) is the angular velocity of
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the rotor, or revolving member of the
motor. Consequently, (2 — w) is the dif-
ference between two angular velocities, or
the angular velocity of the field relatively
to the moving armature or rotor, so that if
the armature revolves at exactly the same
speed as the field (@ — @) = 0. Then
the equation states that the heat H, is the
product of X, and the square of the quan-
tity (@ — ). K, itself is stated at the
top of the page to be:

Z
_ 4r
. In the same way, any combination of
terms may be raised to any power. Thus,

@+b—-c+dy

means that the quantity (¢ + 6 — ¢ + d)
must be multiplied by itself four times in
"succession. The first product would be
the square, the second product would be
the cube, the third product would be the
fourth power, and the fourth product
would be the fifth power.
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If we multiply 10 or 100, by 10® or
1000, we know that the product is 10® or
100,000. Similarly, if we multiply a® by
@’ the product a’e® = ¥ and not a®. 'This
rule, which is of general application, shows
that when products are formed of the
powers of a quantity, the indices or expo-
nents of the powers are added together to
form the product.

According to this rule, 10® X 10° =
106+9, Here the index is the sum of 8
and 0, or simply 38, representing 10%
From this it is evident that if we multiply
10® by 10° we leave it unaltered, just as it
would be if multiplied by unity, because
10* X 1 = 10% Consequently, 10° = 1.
This relation is generally true and is ex-
pressed by the equation

a® =1,

=1,

or

always, whatever @ or @ may be.
Again, 10° X 10~ = 10¢-» = 10° = 1;
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.*. dividing both sides of the equation,

102 X 1078 =1
by 10%,
we obtain
- 100 x 10 _ 1
102 T 10%

Here, on the left-hand side, the 10 in the
numerator cancels the 10% in the denomi-
nator; so that we obtain

1
-8 = ____ .,
107= 18
Similarly,
1
-1 = =
107 = 150
or, is the reciprocal of 10' = 0.1.
1
-2 —
or, is the reciprocal of 10* = 0.02.
1
-8 — ___
107°= 10

or, is the reciprdcal of 100,000,000. = 0.000,-
000,01, and generally,
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g L
a,
or, is the reciprocal of a*, or of a.a.a. to n
times.
| RADICALS OR ROOTS.

By the genera] law of the summation of
exponents,

a = at X a! = a@t+?
a:a}:alxa‘:‘a(i'l‘})-

Here the fractional index or exponent, rep-
resents what is called a 7oot.

For, a! is obviously, by the last equa-
tion, that quantity which multiplied by
itself gives a, or is the square root of a.
Thus, if @ = 9,a* = 8. « is often writ-
ten Vaor Va. Again,

a=ad=adxa xad=qg¢ti+dH

Here at! is the quantity which, cubed, gives
a, or is the cube root of @, and may be
written V@ Similarly, the square root
of any quantity, such as ab, is ‘written
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Vab. or v (ab). Thus, on page 194, of
Thompson’s “ Dynamo-Electric Machinery,”
there is an equation,

R= Vi, [XIT]

This means that the resistance R, is equal
to the square root of the product of two
resistances ; one of which is the resistance
of the armature, and the other the resistance
of the shunt field-magnets. If the product,
7, T 18 Tepresented by the symbol »; or, if
we assume that 7, 7, = 7, then it would
follow that )

B = vy

The square root of the product of two
quantities is called their geometrical mean,
so that the equation [XII] declares that
R, is the geometrical mean of the two
resistances, 7, and 7,

In a similar manner, 75 is the quantity
whose nth power gives 7, and may be
written V7  Thus,
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125t = V125 = 5, because 5 X 5 X 5
= 125; or, b, is the cube root of 125.
We see, therefore, that

c=rxa,
or, is the square of @. -
| x? = ——1 -
@ X
the reciprocal of the square of .
@ =vVe;
or, is the square root of .
In a similar manner we may have any
fraction for the exponent of 2. Thus, we
know by the law of summation of indices

that
o =at X ot x o or (at)

so that a!, represents the cube of the
square root of 2, and may be written

A = (Va)
For example, if

z=4,00 = (Vi) = 28 =8
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Again,
o= (@) =V

For example, if
x=4,4=VP=V64=8,

So that the square root of the cube of
@, is equal to the cube of the square root
of 2.

In general

x5 = (w%)'" = (w")ln = V& = (VE:)'“
On page 137, of Thompson’s “ Dynamo-

Electric Machinery,” there is the following
equation :

W = 0.00383 X 10" X n X B!,

This expresses the fact that the power W,
in watts, expended per cubic centimetre of
iron, by hysteresis, is the product of four
quantities: The first of these is the
33

16000 0

1 1 .
10 ~ 10,000,000’

numerical constant 0.0033, or

second 1s 107 or the
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third is », or the number of magnetic
cycles executed in the iron per second,
while the fourth is 5%, or the 11%th power
of B, the magnetic density in the iron,
expressed in C. G. S. units per square
centimetre.

B¢ = B# go that if we form the 16th
power of B, and then take the tenth root
of this quantity ; that is,if we perform the
operation B, and then 'W, we obtain
the quantity B'S. Or, if we take the
tenth root of B, written u:/_B, and then take
its sixteenth power, we shall obtain the
same result. This quantity will obviously
be greater than B, itself, or B", and will be
less than B X B, or B? since 1.6 is inter-
mediate between 1 and 2.

On page 160, of Thompson’s “Poly-
phase Electric Currents,” occurs the fol-
lowing formula:

L = V@i= (n tmy 1.

This is equivalen*t to the following state-
ment: The impedance in ohms 7, is
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equal to the square root of a compound
quantity. This compound quantity is
the sum of two terms. The first term
is the square of the resistance in ohms,
while the second term is the product of 4
into the square of the quantity =, which
is 8.1416, approximately, or the ratio of
a circumference to its diameter, into the
square of the sum (n + m) of two fre-
quencies, into the square of the inductance
L, in henrys. This equation might be
written :

1,=V{w+ 4n’(n+m)2L’}

or

I,={r=+ 4 (n + m) I* }‘,




CHAPTER 1IV.
EQUATIONS AND THEIR SOLUTION.

THE solution of equations is only to be
successfully attained by practice, but the
elementary rules for their operation are
very simply expressed.

When two things are equal to each
other, which is the condition expressed by
an equation, the same operation performed

upon each will leave the equality un-
changed. Thus, if

a="b (6))
b
53 )
@ =0 €))
a +te=b+c “)

In equation (2) we have divided both

sides by 2, and the quotients must remain
o
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equal. In equation (3) we have squared
both sides of the equation, and the result
must be equality. In equation (4) we have
added the same quantity ¢, to both sides
of the equation and equality must still
subsist. '

If a+b=c (®)
then a+bdb—b=c—b (6)
or, a=c-"5 )

From this it is evident that we may carry
over a term from one side of an equation
to the other by changing its sign; for, in
equation (5) the positive quantity b, is on
the left-hand side of the equation, whereas
in equation (7), which is derived from
equation (5) by subtracting b, from both
sides, the quantity &, appears on the right
hand with the negative sign.
An equation

e=a+4+b+c+d.... ete,

is an equation of the first degree, because
@, appears as of the first power, or &',
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The equations

Z=b+c¢
or
2tar=6+c

are quadratic equations, or equations of

the second degree, because there occurs a

second power of 2, in the equation.
Similarly, such an equation as

@+ 32+ 38=5

is an equation of the third degree; and,
generally, an equation involving a® is an
equation of the nth degree.

An equation can always be solved, when
of the first, second, or third degree, by
definite rules. That is to say, it can be
so manipulated, by suitable operations
upon both sides, that the value of z, can be
obtained. There is, however, no known
way of generally solving equations of higher
degrees than the third; < e, equations
of the fourth, fifth, sixth, etc., degrees.
But the numerical values of the unknown
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quantity can be obtained by approximation
with all desired accuracy by a definite
procedure.

Every algebraic expression is referable
to the preceding rules; that is to say, to
combinations of additions, subtractions,
multiplications, divisions, powers, and
roots; and, however difficult it may be to
solve or manipulate equations, the fore-
going explanations will always enable
any algebraic equation to be understood,
or to be arithmetically solved, when all
the symbols are replaced by their proper
numerical values. Thus, we may take
what is, perhaps, the longest and most
complex formula appearing in Thompson’s
“Polyphase Electric Currents.” This ap-
pears on page 163, as

. n — m
Torque = gr [ P+ 42" I (n — m)®
n -+ m
” + 4 P (n + m)”]
This equation is equivalent to the follow-
ing statement :
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The torque of the motor is the product
of three quantities, the first quantity ¢, is
expressed immediately below as
ZA*By

4 )
that is to say, the quantity ¢, is one quarter
of the product of Z into the square of A4,
into the square of B, into 8.1416.

The second quantity is the resistance .

The third quantity is contained within
a pair of brackets and consists of the sum
of two fractions.

The first fraction has as numerator the
difference between two frequencies » and
m, respectively. The denominator of the
fraction is the square of r, added to the
product of 4, into the square of 3.1416
into the square of the inductance Z, into
the square of the difference (n — m).*

The second fraction, which is to be sub-
tracted from the first, has, as its numer-
ator, the sum of the two frequencies » + m,

q:

* By a misprint, the square of (» — m) has been omitted
in the text referred to.
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and as its denominator the square of the
resistance 7, added to the product of 4,
into the square of 3.1416, into the square
of the inductance Z, into the square of the
sum of the frequencies (n + m).



CHAPTER V.

LOGARITHMS.

WE have seen that by the law of the
summation of indices
¢ x o=t =
and similarly
28 X B8 = gAY
If, then, the quantity #'® = a; or, the
1.3d power of the base z is @, and ?® =
b; or, the 8.6th power of the base @ is b,
and #*° = c¢; or, the 4.9th power of the
base # = ¢, it follows that ad = c.
Suppose that we had a table of indices
of a given base, say 5, and that we found
from this table that the number 25, was
5% or had an index of 2, while the number
125, had the index 3, corresponding to 5°;
then we should know that
25 x 125 = 5* x 5% = b°,
43
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and, if the table informed us that the
number corresponding to the power 5, was
3125, then we should know that:

25 X 125 = 3125,

and we should have been saved the
trouble of performing the multiplication.
Here the indices 2, 8, and 5, are the re-
spective logarithms of the numbers 25, 125,
and 3125, to the base 6.

The ordinary tables of logarithms are
usually employed for the purpose of en-
abling multiplication and division to be
effected quickly and conveniently without
actual arithmetical computation. The
base of the ordinary table of common
logarithms, as they are called, is 10, so
that, since

10' = 10 10* = 100 10* = 1000
10°=1
10-'=0.1 10*=0.01 10-% = 0.001,

it follows that to the base 10, the loga-
rithm of 10 is 1; the logarithm of 100, is



ALGEBRA MADE EASY. 45

2; of 1000 is 8; of 1 is 0; of 1/10th, or
0.1is —1; of 0.01 is —2; of 0.001 is —3,
etc. All numbers lying between 10 and
100, will have logarithms lying between
1 and 2. All numbers lying between 100
and 1000, will have logarithms lying be-
tween 2 and 3, and so on.

Thus, if we want to multiply 15 by 16;
or have to perform by logarithms the
solution of

@ =15 X 16,
we know that the logarithm of 15, lies be-
tween 1 and 2, because 15, lies between 10
and 100, and 10' = 10 and 10°® = 100.
By reference to a table of seven-
place logarithms, or logarithms carried to
seven decimal places, the logarithm of 15
is .1760918.. This is the decimal part or
mantissa. The complete logarithm is
1.1760913, because the characteristic is 1,
and is supplied by the reader. The char-
acteristic ~ distinguishes the logarithm
. from that of 0.15, or 0.0015, or 1.5, or 1500,
all of which have the same mantissa, but
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differ in their characteristics, their loga-
rithms being respectively — 1 + 0.1760913,
—3+ 0.1760913, 0.1760913 and 3.1760913.

Again, the logarithm of 16, is shown in
the tables to be .2041200, and with the
proper characteristic of 1, is written
1.2041200.

‘We now have

15 = 1 1ve0es

16 = 1014100
Lo, 15 X 16 = 101760013 + 1.2041200)

or
@ =15 X 16 = 102021

Here the number «, has as its logarithm
the number 2.3802113. Its characteristic
is 2, and the corresponding number, there-
fore, lies between 10? or 100, and 103 or
1000. The decimal part, or mantissa, is
.38021138. This is found in the logarithm
tables to be the logarithm of 240, so that

9240 = 10 28802118
and
x =15 X 16 = 240,
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Again, if we look in the logarithm
table for the logarithm of the number
5280, which is the number of feet in a
mile, we should find that to seven places
of decimals the mantissa is.7226339. This
means that 1087 = 59280, The 8, or
characteristic of the logarithm, is not given
in the table, but is known by the reader,
because the number 5280 lies between
1000, for which the logarithm is 3, and
10,000, for which the logarithm is 4, so
that he supplies the characteristic when he
writes the logarithm down.

Again, if we look for the logarithm
of 24,900, which is, approximately, the
number of miles around the earth at
the equator, we should find the value
4.3961993. Here the characteristic 4, is
known because the number falls between
10,000 and 100,000, whose logarithms are
4 and 5 respectively. If now, we add
these two logarithms together, we per-
form in fact the equation:

~w — 108.7226889 X 104.3961998 — 108.1188882.
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Here the logarithm 8.1188332, consists of
the characteristic 8, and the decimal part
or mantissa 0.1188332, which in the
logarithmic tables corresponds to the
number 181472. Since the characteristic
is 8, we know that the number 2, lies be-
tween 10® and 10°% or between 100,000,000
and 1,000,000,000, so that the number is -
evidently 131,472,000 and is correct as
far as 6 places of figures. This product
@, is evidently the number of feet around
the earth at the equator according to the
above calculation. Actual multiplication
or arithmetical solution of the equation,

. @ = 5280 X 24,900 ,
gives
@ = 131,472,000 feet,
which agrees exactly with the above loga-
rithmic computation.
Again, we know that

10'+1o°=}—g:=1oﬂx

= 10,

1
io® =10*X 10"
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~ Thus, the quotient of two numbers, the
dividend of which is 10* and the divisor is
10% is expressed as 10°~® so that just as
the sum of two logarithms gives the loga-
rithm of their product, the difference of two
logarithms gives the logarithm of their
quotient, ‘

Thus, if we want to divide 170 by
26, by the aid of logarithms, or solve
the equation

170
® =0
we proceed as follows :

The logarithm of 170, lies between 2 and
8. By tables its mantissa is .2304489.
The complete logarithm of- 170 is, there-
fore, 2.2304489.

Similarly the logarithm of 26, lies be-
tween 1 and 2. By tables its mantissa is
4149733. The complete logarithm of 26
is, therefore, 1.4149733.

‘We now have
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170 = 1004
96 = 1414973
. }21(_?_ = 1()(28304480—1.4140758)
T = %) = 1(0815478,

Here the logarithm of the number ¢,
lies between 0 and 1, so that 2, is between
1 and 10. The mantissa is .8154756. This
is found in tables to correspond to 6.53846.
If we divide 26 into 270, by the ordinary
arithmetical process, we find in fact that
the quotient is 6.53846 as far as 5 decimal
places.

For example, on page 156, of Thomp-
son’s “ Dynamo-Electric Machinery,” oc-
curs the equation:

Permeance = 2.274 X o’ X log, P
1

This is equivalent to the statement that
the permeance is the product of the con-
stant numerical quantity 2.274, into a”,
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into the logarithm to the base 10; <. ¢., the
common logarithm, of the quotient

dy

a

The logarithmic quantity might be con-

sidered as the common logarithm of the
quotient

dy’

W!
obtained by first dividing d;" by d," arith-
metically, and then obtaining the logarithm
of the quotient by examining a table of
logarithms. But the same result will be
obtained if we subtract the logarithm of
d," from the logarithm of d,". Thus, sup-
pose that d,” = 48, and that d," = 6. Then

dy
loglo d 7l logm

or, the logarithm of 8 to the base 10,
which, by reference to logarithm tables, is
0.9030900. In other words 10°%%%0 = g,
But we may arrive at the same result by
taking the logarithm of 48, or 1.6812413
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and the logarithm of 6 = 0.77815183, and
subtracting them. We then have
® = 10(1.ﬁ812418--0.m§18)
= 1©:5080000)
= 8.

Logarithms are also used to perform con-
veniently and quickly ¢nvolution or evolu-
tion; 1. e., to obtain powers, or to extract
roots. Thus it would be a troublesome
~ operation to obtain the 12th power of
say 15, or to solve the equation

@ = 16",

but with the aid of logarithms this is very
simply performed, because the logarithm
of 15, is found to be 1.17609183.

o 15 = 1001

and

1 512 (1 01.1700018)1!

10(-1760913) x 13
10141130858

101 x 1001130806
10" X 1.29746

since by reference to tables the number
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1.29746 has the logarithm 0.1130956, or
@ = 129,746,000,000,000, so far as six
places of figures. The actual number is
129,746,337,890,625.

. Similarly, the 4th root of 15, is obtained
by dividing the logarithm of 15 by 4.

Thus
15 = 1011760018

1 m
V16 = 158 = 10°7 = 100
= 1.968, approximately, by reference
to tables.

Consequently, (1.968)* = 15 approxi-
mately.

For some calculations the base 10, is in-
convenient, and a base is then adopted
which is more natural. In the theory of
numbers and their exponents, this base, as
far as five decimal places, is the number
2.71828. . ... and is called the Naperian
base, and is usually represented by the
symbol e A logarithm of this base
is usually called a natural logarithm, a
Naperian logarithm, or a hyperbolic loga-
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rithm, to distinguish it from the common
logarithm to the base 10.. It is written
log, . Thus, if (2.71828..... »r ==
then » = log, .

It can be readily shown that the Na-
perian logarithm of a number is greater
than the common logarithm of that num-
ber in a fixed ratio which is, approxi-
mately, 2.3026, so that, if we multiply the
common logarithm of a number by 2.3026,
we obtain its approximate Naperian
logarithm.

Thus the common logarithm of 15, is
1.1760918 or 15 = 101013,

The Naperian logarithm of 15, is, there-
fore, approximately,

2.3026 X 1.1760913 = 2.708, approxi-
mately,

or,
15 = &™, approximately,
= (2.71828)*™%,

Thus on page 157, of Thompson’s
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“Dynamo-Electric Machinery,” there oc-
curs the expression:

a
— hyp. log %: .

This means % X 2.3026 log,o‘ %: ap-
proximately.




CHAPTER VI
TRIGONOMETRY.

TricoNoMETRY is the science which
deals with angles and their relations in
geometrical figures. There are two ways
of measuring angles in general use.

The first consists in the ordinary
method of dividing a complete revolution
into 860°, and measuring the angle in
degrees, minutes, and seconds; there being
60 minutes in a degree and 60 seconds in a
minute.

The second method, which is important
in theoretical treatment as distinguished
“from practical treatment, measures an
angle by the ratio of its arc to its radius.
Thus, in Fig. 1, the ratio of the length a,
of the arc of the angle « or AODB to the

length of the radius 7, of the circle on
56
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which it is drawn, is called the radian
measure of the angle a. It is obvious that
if the arc a, is the same length as the

radius 7, the ratio % will be unity, and

this will be a unit angle in radian measure.
Such an angle, which is called a radian,

o . T A
Fig. 1

when expressed in degrees, is equal to 57°
17" 45’, approximately. A complete cir-
cumference, having a length which is
27 times, or 6.2832 times, the length of
the radius, such a complete revolution of
860° is equal to 2 radians. Conse-

quently, a right angle is % or — radians,
] ’
27 _ ”_ radians.

and a single degree is 580 = 180
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In dealing with angles, certain ratios
called the ¢rigonometrical ratios or functions
are constantly used, and it is important to
clearly understand their nature and mean-
ing. Thus, let «, (Fig. 2) be an angle a
= AOB, included between the lines OA
and OB. Then let fall a perpendicular
BC, from the point B, upon the base OA.
Then the fraction whose numerator is the
length of the perpendicular BC, and whose
denominator is the length of the radius,
or the fraction 2 is called the sine of the
angle «, and is written sin @, as an abbre-
viation of the term sine¢ of angle a.

Suppose, for example, that the length of
the line BC, is 1 inch, while the length
of the line OA, which is also the length
of the line, or radius OB, is unity, or 1%
inches. Then the fraction%g = -lli = 0.8
is the sine of the angle «; or, in this case,
sin & = 0.8.

The fraction whose numerator is the
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length between O and C, or the base OC,
and whose denominator is OB ; that is the

fraction g—g, is called the cosine of the

O

Fig. 3

angle a, and is written cos a, as an abbre-
viation for the term cosine of angle a,

The fraction whose numerator is the
length of the perpendicular BC; and
whose denominator is the length of the

base OC, or the fraction %,is called the
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tangent of the angle a, and is written
tan a, which is an abbreviation of the
term, fangent of angle a.

The fraction whose numerator is the
length of the radius OB, and whose de-
nominator is the length of the base OC,

or the fraction B, is called the secant of

)

~ o0
the angle @, and is written sec «, as an
abbreviation for the term, secant of angle

a. The secant of the angle is the recipro-

cal of the cosine or sec a = Con-

cos a
sequently, when the cosine of the angle is
known the secant becomes immediately
known.

The fraction whose numerator is the
length of the radius OB, and whose de-
nominator is the length of the perpendicu-

lar BC, or the fraction gg , 18 called the

cosecant of the angle a, and is written
cosec a, as an abbreviation for the term,
cosecant of angle a. The cosecant of an
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angle is the reciprocal of the sine of the

angle; or, cosec a = ——.
sin a

The fraction whose numerator is the
length of the base OC, and whose denomi-
nator is the length of the perpendicular
BC, or the fraction 1-?—37 , is called the cotan-
gent of the angle a, and is written cof a, as
an abbreviation for the term, cotangent of
angle a. It is the reciprocal of the tan-

t of th 1 that cot « = .
gent of the angle, so that cot @ = ———

As an angle increases in value, that is to
say, as the radius OB, is carried further
and further away from the initial line
OA, these trigonometrical ratios—i. e., the
sine, cosine, tangent, and their reciprocals,
the cosecant, secant, and cotangent—
undergo variation. Confining our atten-
tion to the first right angle or first quad-
rant; 1. e, to the angle «, whose value is
not greater than 90° the sine increases
from O to 1; the cosine diminishes from 1
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to 0; and the tangent increases from 0 to
. In other words the sine of 90° is
unity ; the cosine of 90° is zero; and the
tangent of 90°, is indefinitely great, or
infinity.

In Fig. 8, the radius at the angle 60°,
has a perpendicular B(}; assuming that
the radius OA4, or OB, is of unit length,
the length B(}, will be found to be 0.866,
approximately ; and this is the ratio of

B

. 0B,
or the sine of the angle 60°% or, sin
60° = 0.866. The length of the base OC,
will be found by measurement to be half
OB; or,if OB, is unit length its value will
be 0.5, so that the cosine of the angle 60°
is 0.5; or, cos 60° = 0.5. Similarly, the
fraction represented by the
BC, _ 0.866 _

oc, 05
is the tangent of the angle a; so that
tan 60° = 1.732.

1.732
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Carrying the moving radius, or radius
vector as it is called, past the perpendicular
Ob, into the second quadrant, to a position

b
B,

c. - - i

‘§ Fig.3

OB,, which is 150° angularly distant from
OA, the length of the line [3,(; which
represents the sine of the angle B,04, is
0.5, so that sin 150° = 0.5. The length of
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the line OC, which measures the cosine of
the angle B,04,is 0.866 but being meas-
ured backward from O, or in the negative
direction, it is written —0.866, so that cos
150° = —0.866. The tangent of the angle
150° is the fraction

BC _ 05 _ _ -

oG, ~ =oses  >OTh
approximately, so that tan 150° = —0.577,
approximately. The cotangent would be
the reciprocal of this or

1
0577 —1.732.

Carrying the moving radius or radius
vector into the third quadrant, to such a
~ position, for example, as that represented
by OB,, so as to include an angle 40B,,
of 240° the length (3B, is the same as
B,C,, but is now measured below the line
OA, or negatively; so that sin 240° =
—0.866. The cosine OC; = —0.5 so that
cos 240 = —0.5. The tangent

.Bacya _ —0.866 _
0(/18 - - _0'5 - 1-732’
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while the cosine, secant, and cotangent are
the reciprocals of these three quantities
respectively.

Carrying the radius vector into the
Jourth quadrant, to such a position as is
represented by the line OB, so as to
include an angle of 350°, between 04 and
OB, the length B,(}, which measures the
sine of the angle, will be found to be
—0.174, approximately, the minus sign
being attached, because B,C; is below the
line OA; the cosine, or the length OC, is
+0.985, approximately, so that cos 850° =
0.985. The tangent

B,C, _ —0.174 _
0C, ~0.98

approximately, and the cosecant, secant, and
tangent are found as the reciprocals of
these three quantities, respectively.
Trigonometrical tables give the numeri-
cal values of the sine, cosine, tangent,
cosecant, secant, and cotangent for all
angles to any reasonable desired degree of

-0.176,
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accuracy. Tables are also commonly given
of the common logarithms of the trigono-
metrical ratios for convenience in multiply-
ing and dividing them.

On page 648, of Thompson’s “ Dynamo-
Electric Machinery,” occurs the equation :

¢, = K, cos 6.

This means that the E. M. F. induced in
an adjacent coil of wire, at any instant by
the revolving magnet, is equal to the prod-
uct of a certain maximum E. M. F,
denoted by the symbol %, and the cosine
of the angle which is included between the
position of the magnet, at the instant con-
sidered, and the position of maximum
E. M. F. If the angle 6 = 0, cos 6, will be
found by reference to a table, or by exami-
nation of Figs. 2 and 8, to be unity, and
the equation becomes ¢, = F;; whereas, if
the magnet has turned through an angle of
90° it cannot at that instant induce any
E. M. F. We find, correspondingly, that
cos 90° = 0, so that e, = £; X 0 = 0.
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On page 160, of Thompson’s “ Poly-
phase Electric Currents,” the equation
oceurs:

cos g = L.
1,

Here @, is a certain angle; namely, an
angle of lag, or the angle between an
E. M. F. and the current it is supposed to
produce. The equation states that the
cosine of this angle @, is the quotient
obtained by dividing the resistance » ohms,
by the impedance Z; ohms, and if » = say,
8 ohms, and 7, = 5, then
' r 8

I] = 5 = 0.6,

and the equation becomes cos @, = 0.6.
By reference to a table of cosines it will be
found that, for this cosine, ¢, = 58° 8
approximately.

On page 563, of Thompson’s “ Dynamo-
Electric Machinery,” occurs the following,
in connection with Fig. 362 :

pL
VE+PLEF

sin ¢ =
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This equation may be regarded either
from an algebraic or from a geometrical
point of view. First, considering it alge-
braically, the statement contained in the
equation is that if we form a fraction whose
numerator is the product of the two quan-
tities represented by p and Z, and whose
denominator is the square root of the sum
of two squares,—one being the square of
the resistance 22, and the other being the
square of a quantity p.L,—the quotient will
be the sine of a certain angle ¢; or, regard-
ing the equation geometrically, it is to be
observed that in Fig. 362, the length of the
line marked ¢mpedance, is, by a well-known
geometrical proposition, equal to the square
root of the sum of the squares of the base
R, and perpendicular pZ, so that this
length representing the impedance is

V B+ pPI*.

But in the triangle it is evident that, by
definition, the sine of the angle ¢, is the

-
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quotient of the length pZ, by the length
of the radius, or the impedance, so that
pL
VR A+ p* I

Similar reasoning applies immediately
to the two equations to be found on page
563, which express the cosine and the
tangent of the angle respectively.

On page 182, of Thompson’s “ Poly-
phase Electric Currents,” appears the
equation :

G=5p sin (pt — 60°).

This equation is equivalent to the state-

ment that a certain alternating current c,
is equal to a fraction, the numerator of
which is the product of a maximum
E. M. F, £ and the sine of a certain
angle (pt — 60°), while the denominator
is double the resistance Z. The angle
(pt — 60°), consists of two terms, the first
of which p¢, is the product of a constant
quantity p, and the time ¢ in seconds,
starting from some assigned moment. As

sin @ =
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time goes on, the angle pf, continually
increases. This angle must be reduced by
60°, and the sine of the remainder, as
found in trigonometrical tables, inserted in
the equation, will give the value of the
current ¢ It will be found, on studying
the behavior of this angle (p¢z — 60°).
that it steadily increases from 0, round to
360°, then again round to 720° and so on,
repeating itself in each revolution. The,
sine of the angle will pass through the
values 0 +1,0 — 1,0+ 1,0 — 1, and 80
on, so that the current ¢ will rise to a
certain maximum, then diminish to zero,
then rise to a negative maximum, and
then return to zero cyclically. This is a
property which denotes an alternating
current. Since the current varies with
the sine of the angle (p? — 60°), it may be
said to be a sinusoidal current.

On page 159, of Thompson’s “Poly-
phase Electric Currents,” appears the fol-
lowing equation :

N = A cos aB, sin 2znt.
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This equation states that the total mag:
netic flux &, in C. G. 8. lines, enclosed by
a certain conducting loop under considera-
tion, is equal to the product of four terms.
The first term is the area A4, of the loop ex-
pressed in square centimetres. The second
term is the cosine of the angle included
between the plane of the conducting loop
and the plane perpendicular to the direc-
tion of the magnetic flux. The third term
is B, the flux density, or the number of
magnetic lines per normal square centi-
metre, and the fourth term is the sine of
the angle which is the product of 2 into =,
into n, into ¢; =, being 3.1416; n, being the
frequency of alternation, and ¢, being the
time expressed in seconds from a given
epoch. If we form the product 2ant,
and substitute the sine of this angle for
any given instant 4, and also if we find the
cosine of the angle @, which the conductor
occupies at the instant ¢, the equation will
enable us to determine the total quantity
of magnetic flux embraced by the con-
ductor at the instant ¢.



CHAPTER VIL
DIFFERENTIAL CALCULUS,

THE differential calculus supplies a
method of dealing with quantities that are
subjected to continued variation and of
which the rate of variation at any instant
is required.

Imagine a railway train, in operation
upon a track, and suppose that it is neces-
sary, for any purpose, to know the speed
with which the train moves; or, in other
words, to determine the velocity of the
train. This velocity might be determined
experimentally, by some form of centrifugal
indicator, properly calibrated, but in the
absence of such an instrument it might be
necessary to determine the velocity by
ascertaining how far the train moved along

the track in a given measured interval of
(]
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time. For example, with the aid of a stop-
watch, it might be perfectly feasible to
count the number of rail lengths passed by
in one minute, each rail being just 30
feet long. If, in this way, we found that
in one minute the train passed over exactly
150 rails, the total distance traversed in
the minute would be 4,500 feet, and this
represents a velocity of 4,500 feet per
minute.

This method might be capable of a high
degree of accuracy if the train were moving .
at a uniform speed ; but suppose the train is
either accelerating, or is being retarded.
It is impossible to obtain the correct speed
at any moment by an observation lasting
for a minute, because, during that time, the
train might have greatly varied its speed,
and only what might be called an average
speed could be obtained by such an obser-
vation. If, however, it were feasible to
make an observation in one second of time,
instead of one minute, it is evident that
the degree of accuracy would be greatly
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increased, because the speed would not
have had time to appreciably vary during
that interval of one second in which the
observation was made. Thus, if in a single
second the train moved over exactly 1.5
rails, this would be a distance of 45 feet, and
the velocity at the time considered would
be 45 feet per second, or 2,700 feet per
minute. But forsudden starting or sudden
stopping it is conceivable that even a
single second of time would be too long an
interval to measure the speed correctly,
because even in one second the speed
might vary considerably. If, however, it
were possible to measure the distance
passed through in say 1/1000th of a
second, the degree of accuracy, in deter-
mining the velocity at any particular
instant, would be much greater, because,
during so short an interval of time as
the 1/1000th part of a second, very
little change in velocity could take
place. :

In the same way it is evident that for a
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theoretically perfect measurement of the
velocity at any given instant, as distin-
guished from the average velocity extend-
ing over any period of time, the
measurement of the distance run through
would have to be made in an infinitely
short period of time. For example, if the
distance travelled by the train in one
second were 1.5 rails, or 45 feet, represent-
ing a mean velocity during that second of
45 feet per second, yet we might find that in
the particular 1/1000th of a second during
that time the distance travelled through
was 1/20th of a foot. The velocity would
be expressed by the fraction

Distance _  0.05 foot
Time ~ 0.001 second

and the quotient would be 50 feet per
second.

Generalizing this, if we represent by the
symbol 4f, (delta f) a .certain small dis-
tance in feet, and by 4¢, (delta ?) a certain
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small interval of time during which the
observation lasted, the mean velocity dur-
ing the time 4¢, would be:

4
meanv:-—'-f,
At

The smaller we make 4¢ the smaller
will the distance travelled 47, become,
and the closer will the mean velocity so
computed approach to the instantaneous
velocity at the moment considered. If we
could imagine that an indefinitely small in-
terval of time was selected, that is to say,
if 4¢, was indefinitely shortened, the cor-
responding value of the distance travelled
would be also indefinitely reduced, but the
quotient formed by dividing the infinitely
small distance 4f, by the infinitely small
time 4¢, would give the theoretically ex-
act velocity of the train at that moment.
In the symbols used by the differential
calculus, this indefinitely small time is
written d7, and the corresponding inde-
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finitely small distance is written df, the
velocity being

_df
Y=

It is to be observed that df, con-
sidered alone, or d?, considered alone, be-
comes meaningless, because we cannot con-
ceive of an infinitely short time, or of
the distance the train would run in an in-
finitely short time, but it is perfectly fea-
sible to imagine that the velocity, which is
only a mean velocity when the time is ex-
panded to an actual time 4¢, and the cor-
responding distance df, expanded to an
actual distance 4f, becomes closer and
closer to the real velocity as 4f and
4¢, are shortened, and we merely use the

symbol v = % in the above equation
as expressing symbolically the following
statement :

The true velocity of the train is such
that if the measurement could be made in
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an infinitely brief interval of time, and the
corresponding distance run through in that
time could be observed, the infinitesimally
small distance divided by the infinitesi-
mally small time would be the true cr
instantaneous velocity, although, in any
actual measurement, this value can oumly
be approached.

The fraction g{ , 18 called the differential

cogfficient of the quantity f, with respect
to the quantity ¢£. In the above considered
case it is the differential coefficient of the
distance travelled by the train to the time
of travel. Here the symbol d, cannot be
considered as either a product, or as being
separable from the quantity to which it is
prefixed. But df, is to be considered as an
abbreviation for the term, the differential
of f, and df, the denominator, is to be con-
sidered as an abbreviation for the term,

the differential of t. The ratio g , has

usually a definite limiting value, as, in

RN SN ORIFP IS TP _—— e
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the above case, the true instantaneous
velocity of the train, although df and dt,
are each assumed to be indefinitely
small.

A differential coefficient % , 18, there-

fore, to be regarded as the limit which the

. fraction Z_C assumes, when 44, is indef-

initely reduced ; <. e, the limiting ratio of
a small change in f, to the small change
in ¢, which gives rise to it.

Almost the whole theory of the differen-
tial calculus is devoted to a consideration
of the values which differential coefficients
assume under different circumstances; <. e.,
of ‘the limiting values of the ratios between
finite quantities, which are dependent upon
each other, or connected together in some
definite manner, and which are coincident-
ally reduced indefinitely.

On page 721, of Thompson’s “ Dynamo-
Electric Machinery,” occurs the following
equation, which is called a differential
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equation because it involves differential
coefficients :

aC, a0,
E;—Md—;—le—tl"—RIOI:O.

Here the equation makes the following
statement :

In the primary circuit of an induction
coil there are, in general, at any instant,
four E. M. Fs. acting, and their sum.is
~ zero,

The first term is a certain given
E. M. F. £, usually called the smpressed

The second term is — M 2,

dt
product, taken negatively, of the mutual
inductance M, between the primary and
secondary windings of the coil, multiplied
by the differential coefficient of the sec-
ondary current C;, with respect to time.
We can imagine that by some process
the exact rate of increase of the secondary
current is determined by observing the
actual increase 4(,, which takes place in an

, and is the
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very short interval of time 4, and the
ratio ild_% , when the interval of time 4¢
is reduced theoretically to zero, is the true
instantaneous rate of increase of the sec-
ondary current at the instant of time
considered.

The third term is the product, taken

negatively, of the self-inductance Z, of the
primary coil, multiplied by the instantane-
ous rate of increase of the primary current,
expressed by the differential coefficient
aCy
5
rent (Y} is supposed to be measured in an
indefinitely brief period df, of time, and
the ratio or quotient obtained by dividing
the imaginary change of primary cur-
rent, so measured, by the infinitesimal
interval df, in which the change takes
place, is the instantaneous true increase
of primary current at that instant.

The fourth term is the product, taken
negatively, of the drop of pressure, or

Here the increase in primary cur-
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E. M. F, in the circuit, due to the ohmic
resistance, consisting of the product of the
primary resistance and the primary current.

The equation, then, states that the sum
of all the E. M. Fs, including the apparent
E. M. F. of drop, is equal to zero in the pri-
mary circuit at any and everyinstant of time.

There are rules for determining the dif-
ferential coefficient of any variable, in
terms of any other variable upon which it
depends. Thus, if a certain variable is
expressed by the equation

= 9
=3

so that f, is a quantity, say a distance
travelled, which varies with the quantity ¢,
say the time, in the manner described by
the equation, it is shown, in treatises on
the differential calculus, that the differen-

tial coefficient 7‘{—, is in this case expressed
as gt; or,
£
‘;—; = gt when f = %

-
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In reading technical works, however, it is
usually quite unnecessary for the student
to understand how the differential coeffi-
cients are obtained, and the reasoning is
entirely unaffected, if the conception of a
differential coefficient is kept in mind.

A differential coefficient % , Where f,
represents distance or space, and ¢, repre-
sents time, is an instantaneous time-rate of
the increase in f.

A differential coefficient aw

75 where W,
is the work done, and s, is the space trav-
ersed, is an instantaneous space-rate of
increase of work, and is the limit of a
definite amount of work W, performed in
a definite space s, when the space is indef-
initely diminished.

On page 159, of Thompson’s “ Poly-
phase Electric Currents,” occurs the equa-
tion :

dN

E=——‘dz—.
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This expresses the fact that the E. M. F.
induced in a conducting loop is the nega-
tive instantaneous time-rate of increase of
magnetic flux through the loop, or the
limit of the quantity of flux added to the
loop in unit time, when the unit of time is
made indefinitely small; in other words,
an instantaneous velocity of adding flux to
the loop.

Immediately above this equation, on
page 159, is the solution of this differential
coefficient for the case assumed, in which
N = A cos aB, sin 2znt. This the stu-
dent will have to accept without demon-
stration until he has so far familiarized
himself with the processes of differentia-
tion, according to the rules of differential
calculus, as to be able to perform the
solution. But for the purpose of following
the explanations in the text on page 159,
this knowledge is quite unnecessary.



CHAPTER VIIL
INTEGRAL CALCULUS.

Jusr as the operation of extracting a root
is, as we have seen, the inverse operation
of raising a quantity to the corresponding
power, so the integral calculus deals with
the inverse operation to that of the differ-
ential calculus. In the differential calculus
one of the principal objects is to determine,
from & known relation between two con-
nected variables, such, for example, as
elevation and barometric pressure, what is
the instantaneous rate at which, at a given
elevation, the pressure varies as the eleva-
tion is changed ; or, the ratio of an ex-
tremely small change in pressure to the
extremely small change of elevation that
produces it, this ratio being called the

differential cogfficient of the pressure with
8
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respect to elevation. Inversely, one of the
principal objects of the integral calculus is
to determine, from a given differential
coefficient ; <. e., in the above case, from a
known instantaneous rate of increase of
pressure with elevation, what must be the
law connecting the variables; <. e, the
general relation between pressure and
elevation.

The problem of the integral calculus, or
of integration, is, therefore, that of finding
the relations which give rise to a differen-
tial coefficient. It can be shown to resolve
itself into a summation of an indefinitely
long series of terms, each of which is in-
definitely small.

Suppose, for example, we allow a stone
to fall to the ground from an elevation. It
is known that, neglecting the friction of the
air, the velocity of the stone at any mo-
ment is proportional to the time which
elapses from its release. If this velocity be
graphically represented as shown in Fig. 4,
by distances above the line OZ] along
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which time is measured in seconcs, then
the line OV, will show the velocity at any
moment. Thus, at an interval of one sec-
ond after the release of the stone, the
velocity acquired will be 382.2 feet per
second ; after two seconds, 64.4 feet per

\)
//
v
b
g
?
_& 1
E 7 ' b
1 -
|E :
B | .
Y i 2 3

8econds
Fig. 4«

second ; and after ¢ seconds, # X 82.2 feet
per second.

Suppose it be required to determine the
total space through which the stone fallsin
a time 7'seconds, 7, being 8.5 seconds in
" Fig. 4. Since the velocity is varying all
the time, we cannot say, from a mere
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ingpection of the problem, what the total
distance will be, but it is evident, that if
we consider any very small interval of
time 4¢, say at one second from the start,
or when the velocity v, is 32.2 feet per sec-
ond, then the distance passed through by
the stone in this little interval of time will
be the product of the velocity v, then exist-
ing, and the time interval, or, the space 4s,
equals v4¢ = 32.24¢. Such an equation
as this is never strictly correct, because
in the interval of time 4%, no matter how
small it may be taken, there will be some
variation in the velocity v, but if we take
in imagination 4¢, as infinitesimally small,
and represent this symbolically by d¢, and
the corresponding distance by dfs, then we
shall have strictly, ds = »d?. Or, in Fig.
4, at f, one second after release, will be

ds = 82.2d%.

This product represents the area of a lit-
tle strip between, the dotted lines connect-
ing 1 and £, in Fig. 4. The smaller d¥, is
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taken, the narrower will be this strip ; and,
if d¢, is in imagination infinitely small, the
strip df, will be of vanishing width.

If we divide the whole time 7] into equal
infinitesimal intervals &, the equation ds
= vdt, will be true for every little strip
drawn as in Fig. 4; v, however, varying
from strip to strip, being 64.4 at 2 seconds,
96.6 at three seconds, and so on. 'We have
then an imaginary series of equations like
the following :

dgl = 'Uldt =0 X dt,
because the velocity starts at zero.
d82 = ’vﬂdt’
d83 = ’vsdt.

ds, = v,dt = 82.2 dt;
m, being the number of intervals in one
second, and 32.2, being the velocity at the
end of one second ; until, finally,

ds, = v, dt ;

v,, being the velocity at the end of the
interval 7. If we add all these equations
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together, we obtain the total distance
fallen through by the stone in the time 7’;
or,
S=ds +dsy+ds+....+ ds,

= 0, dt + vdt + vdt +....+ v dt.

This sum is written in the notation of the
integral calculus,

T
S=j odi;
o .

7. ¢, the sum, represented by the signj,

of all the elementary terms whose type vd¥,
taken from the term at ¢ = 0, and con-
tinued up to the term ¢ = 7] and assuming
that the number of terms is indefinitely in-
creased. In Fig. 4, the area of all elemen-
tary strips of the type vd¥, will be the area
of a triangle 07%, and this will represent
the space fallen through by the stone in the
time 70

The natural problem of the differential
calculus applied to the falling stone would
be as follows :
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A stone falls through a distance of 16.1
feet in 1 second, and 197.225 feet in 3.5
seconds, at a continuously varying velocity
according to some definite law. What is
the instantaneous velocity, or the differen-
tial coefficient of the space traversed with
respect to the time?

The answer would be:

_ds
V=&

= 82.2¢.

The natural problem of the integral cal-
culus applied to the stone is just the oppo-
site. :

Having given the known relation tha
the velocity of the stone at any time ¢,
seconds after its release, is

V = 82.2¢ feet per second,

what is the total distance which it will de-
scribe in a given time 77

‘We know that when 7' = 85, § =
197.225, and &, is obtained by the summa-
tion of a theoretically infinite number of
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infinitely small terms, and is represented
graphically by the area comprised between
the line of velocity ov, the perpendicular
Tv, and the base 07, this area being com-
posed of an infinite number of little verti-
cal strips side by side and of the type fdt.

On page 25, of Thompson’s *Poly-
phase Electric Currents,” appears the fol-
lowing formula:

¥

This expression means that a certain in-
tegral is to be divided by the quantity ¢;
or, what is the same thing, multiplied by
the reciprocal of . The integral is the
sum of an indefinite number of elements,
each of which is of the type ¢ cos y d y, and
which elements must be summed up be-
tween the limits of y = 0 and y = ¢.

In Fig. 5, let the line 0.4, be marked off
to correspond to the angle y. For exam-

' ple, each inch of the line 0.4, might corre-
~spond to some definite number of degrees

v
ls e.cos y. dy.
o
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or radians of the angle y, considered, any
suitable scale being chosen. Let distances
measured vertically above this line o4,

B\1

N

e.cos."y™

>

o 7d, m

Anale.y Fig. 8
and, therefore, drawn parallel to 0B, repre-
sent the value of the product ¢ cos y.

As y, increases, cos y, will vary. Con-
sequently, the product of ¢ and cos y, will
vary, and the elevation which represents ¢
cos y, will vary. The curve BC(, is sup-
posed to be correctly drawn, so that at any
point ¥, the perpendicular yy, corresponds
in length to the value of ¢ cos y, for the
particular angle represented by the dis-
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tance of the foot of the perpendicular y,
from o, so that length of yy, equals ¢ cos
y. Similarly, length 0B, equals ¢ cos o,
and length ¢, equals ¢ cos 4.

Since cos 0 .= 1, ¢ cos 0 = ¢, and the
length of 0B, is equal to ¢, units, As y,
increases cos y, diminishes and the curve
By(, falls to the minimum (] which repre-
sents ¢ cos . At y, if we take a small
length on the base ‘equal to dy, and carry
perpendiculars from the ends of this small
space, so that we have a thin strip shown
by the dotted lines, the area of which is ¢
cos y dy, the height of such a strip will,
of course, vary on different points along
the base; but the sum of all such strips,
taken between the limits of the base y =0
and y = ¢, will be the total area between
the line 0B, the curve BC,the line ¢, and
the base oy, and if we suppose dy, to be
indefinitely small, so that the strip becomes
indefinitely narrow, the sum of all such
strips will give accurately the included

area BCyo. The integral,
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¥
j ecos ydy.
o .

will be numerically equal to the area
BCto, since it will be the sum of all the
strips whose height is ¢ cos y, and whose
width is dy, the latter being taken in-
deﬁnitely small and the terms being taken
in correspondingly great number.

A problem expressed by an mtegral
may, therefore, always be considered as
equivalent to the summation of an area be-
tween a specified curve, conforming to the
given law, and the base line, between def-
inite perpendiculars on the base.

The rules. for performing integration
must be acquired by practice and acquaint-
ance with the integral calculus. In most
technical books it is sufficient for the pur-
pose of the reader if the conception of an
integral is clearly apprehended.
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Seven-Place Logarithms, 45.
Sides of Equation, 38.
Sine of Angle, 58.
Solidus, 21.
Solution of Equations, 37.
Square Root, 31.
Squaring a Number, 25.
Subscripts, 9.
Symbolic Language of Mathematics, 3,
Symbols, 6.

T

Tables, Trigonometrical, 65,
Tangent of Angle, 60.

Terms, Compound, 14.

of Equation, 9.

Third Degree, Equations of, 39.
Quadrant of Angle, 64.
Trigonometrical Functions, 58.
Ratios, 58.
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Various Methods of Indicating Multiplication, 16,
Vector, Radius, 63,
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